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Abstract

Electrical energy wastage is a major problem in residential areas in modern societies. Energy
production costs our environment a great deal and wasting such valuable assets will bring
enormous consequences for future generations. Hence, it is a vital priority for researchers
in all areas to tackle this problem. Computer science, alongside other disciplines, provides
approaches to abate the overconsumption of electrical energy using a modern computation
algorithm called deep learning. Deep learning models are powerful tools for the computation
of complex problems, namely energy disaggregation problems. Non-Intrusive Load Monitor-
ing (NILM) is becoming popular as an approach for extracting detailed power consumption
information related to different appliances used in a household. NILM utilizes time-series
analysis methods to disaggregate the signals of operating appliances from a single point in
houses and, based on that, can provide advice to households about how to reduce their energy
consumption. NILM is known to be a challenging task from a computational perspective,
and previous solutions have not demonstrated sufficient accuracy. This thesis aims to achieve
solutions with higher accuracy by utilizing deep neural network models with a Parallel
Long Short Term Memory Topology (PLT) and Deep Transformer Networks. To implement
machine learning techniques on low-cost devices with limited computation power, the Deep
Transformer Networks are enhanced to adapt to these criteria, and then, in order to tackle
the imbalance in appliances in the current datasets, a synthetic dataset is proposed and the
models are applied to the synthetic dataset with the transfer learning method. The proposed
method to create a synthetic dataset improves the accuracy and reduces the training time for
the deep learning models in this study. To create the proposed synthetic data generator, the
common time-series features of different appliances have been modelled with mathematical
formulas. Since maintaining the privacy of users is vital in our design, the solution is opti-
mized for implementation on edge devices, and all computation related to residents’ data will
be performed locally. The thesis describes the main structure of the deep learning models
that are introduced and the proposed synthetic data generation method, then evaluates them
on publicly available datasets.
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